Performance of weighted radial basis function classifiers
نویسندگان
چکیده
This paper describes Weighted Radial Basis Functions, a neuro-fuzzy uni cation algorithm which mixes Perceptrons and Radial Basis Functions. The algorithm has been tested as a pattern classi er in practical applications. Its performance are compared against those of other neural classi ers. The proposed algorithm has performance comparable or better than other neural algorithms, although it can be trained much faster. It can also act as a neuro-fuzzy uni cation algorithm.
منابع مشابه
Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where 'unknown' faults may occur
This paper presents a novel technique which may be used to determine an appropriate threshold for interpreting the outputs of a trained Radial Basis Function (RBF) classifier. Results from two experiments demonstrate that this method can be used to improve the performance of RBF classifiers in practical applications.
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملA numerical solution of a Kawahara equation by using Multiquadric radial basis function
In this article, we apply the Multiquadric radial basis function (RBF) interpo-lation method for nding the numerical approximation of traveling wave solu-tions of the Kawahara equation. The scheme is based on the Crank-Nicolsonformulation for space derivative. The performance of the method is shown innumerical examples.
متن کاملCombining Face and Iris Biometrics for Identity Verification
Face and iris identification have been employed in various biometric applications. Besides improving verification performance, the fusion of these two biometrics has several other advantages. We use two different strategies for fusing iris and face classifiers. The first strategy is to compute either an unweighted or weighted sum and to compare the result to a threshold. The second strategy is ...
متن کاملEnhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme
In this study, the performance of two neural classifiers; namely Multi Layer Perceptron (MLP) and Radial Basis Fuction (RBF), are compared for a multivariate classification problem. MLP and RBF are two of the most widely neural network architecture in literature for classification and have successfully been employed for a variety of applications. A nonlinear scaling scheme for multivariate data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997